首页 科技 双层石墨烯展现超流体向“超固体”转变

双层石墨烯展现超流体向“超固体”转变

据最新一期《自然》杂志报道,美国哥伦比亚大学与得克萨斯大学奥斯汀分校的联合研究团队,首次在双层石墨烯体系中观察到了由超流体向疑似超固体转变的相变过程。这一发现填补了凝聚态物理领域半个世纪以来的实验空白,标志着人类在操纵高温量子物态方面迈出了关键一步。

普通物质随温度下降会经历“气—液—固”的转变,而量子物质的行为却不同。20世纪初,研究人员发现氦气冷却后会从普通气体转变为“超流体”,可无能量损耗流动。长期以来,物理学界一直在追问:当超流体进一步冷却,会出现怎样的新量子态?

一种可能是,超流体在极低温度下形成兼具固体和液体特性的量子态,被称为超固体。超固体既有晶格结构,又可像液体一样流动。尽管理论早有预测,但在天然物质中尚未明确观测到超流体向超固体的自发转变。此前的实验,多依赖激光等手段在人工构建的周期性势阱中模拟该状态。

此次研究采用双层石墨烯作为实验平台,通过调控两层石墨烯中的电子与空穴分布,可形成名为“激子”的准粒子。在强磁场作用下,这些激子能够凝聚成超流体。实验发现,当激子密度较高时,体系呈现典型的超流行为。但随着密度降低,激子运动被抑制,体系转而表现为绝缘体。进一步升高温度后,超流特性再次出现。

超流体通常被视为低温下的稳定基态,而此次观测到的低温绝缘相在升温后“融化”为超流体,这种反常行为此前从未在相关体系中出现,暗示该低温相可能是一种非常规的激子固体。

该研究表明,二维材料可为探索超流体、超固体等量子相态提供了新的可能。与传统体系相比,激子的有效质量更轻,有望在更高温度下形成相关量子态。同时,这一成果还丰富了凝聚态物理研究内容,为人类理解和操纵复杂量子物态提供了新的实验途径。

免责声明:本文仅代表作者个人观点,与华侨网无关联。其原创性及文中陈诉内容未经本网证实,对本文内容、文字的完整、真实性,以及时效性本网部作任何承诺,请读者自行核实相关内容。如发现稿件侵权,或作者无意愿在华侨网发布文章,请版权拥有者通知华侨网处理。
下一篇

为您推荐

联系我们

联系我们

+1(514)3979969

邮箱: cpress@chinesepress.com

工作时间:周二至周五,10:00-16:00,节假日休息
关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部